Adaptive texture and color segmentation for tracking moving objects
نویسندگان
چکیده
Color segmentation is a very popular technique for real-time object tracking. However, even with adaptive color segmentation schemes, under varying environmental conditions in video sequences, the tracking tends to be unreliable. To overcome this problem, many multiple cue fusion techniques have been suggested. One of the cues that complements color nicely, is texture. However, texture segmentation has not been used for object tracking mainly because of the computational complexity of texture segmentation. This paper presents a formulation for fusing texture and color in a manner that makes the segmentation reliable while keeping the computational cost low, with the goal of real-time target tracking. An autobinomial Gibbs Markov Random Field (GMRF) is used for modeling the texture and a 2D Gaussian distribution is used for modeling the color. This allows a probabilistic fusion of the texture and color cues and for adapting both the texture and color over time for target tracking. Experiments with both static images and dynamic image sequences establish the feasibility of the proposed approach.
منابع مشابه
Mathematical Analysis of Optimal Tracking Interval Management for Power Efficient Target Tracking Wireless Sensor Networks
In this paper, we study the problem of power efficient tracking interval management for distributed target tracking wireless sensor networks (WSNs). We first analyze the performance of a distributed target tracking network with one moving object, using a quantitative mathematical analysis. We show that previously proposed algorithms are efficient only for constant average velocity objects howev...
متن کاملIterative Division and Correlograms for Detection and Tracking of Moving Objects
This paper presents an algorithm for the detection and tracking of moving objects based on color and texture analysis for real time processing. Our goal is to study human interaction by tracking people and objects. The object detection algorithm is based on color histograms and iteratively divided interest regions for motion detection. The tracking algorithm is based on correlograms which combi...
متن کاملA Novel Method for Tracking Moving Objects using Block-Based Similarity
Extracting and tracking active objects are two major issues in surveillance and monitoring applications such as nuclear reactors, mine security, and traffic controllers. In this paper, a block-based similarity algorithm is proposed in order to detect and track objects in the successive frames. We define similarity and cost functions based on the features of the blocks, leading to less computati...
متن کاملA shadow elimination approach in video-surveillance context
Moving objects tracking is an important problem in many applications such as video-surveillance. Monitoring systems can be improved using vision-based techniques able to extract and classify objects in the scene. However, problems arise due to unexpected shadows because shadow detection is critical for accurate objects detection in video stream, since shadow points are often misclassified as ob...
متن کاملMoving Objects Tracking Using Statistical Models
Object detection plays an important role in successfulness of a wide range of applications that involve images as input data. In this paper we have presented a new approach for background modeling by nonconsecutive frames differencing. Direction and velocity of moving objects have been extracted in order to get an appropriate sequence of frames to perform frame subtraction. Stationary parts of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pattern Recognition
دوره 35 شماره
صفحات -
تاریخ انتشار 2002